NAG C Library Function Document

nag_prob_non_central_beta_dist (g01gec)

1 Purpose

nag_prob_non_central_beta_dist (g01gec) returns the probability associated with the lower tail of the non-central beta distribution.

2 Specification

3 Description

The lower tail probability for the non-central beta distribution with parameters a and b and non-centrality parameter λ , $P(B \le \beta : a, b; \lambda)$, is defined by

$$P(B \le \beta : a, b; \lambda) = \sum_{j=0}^{\infty} e^{-\lambda/2} \frac{(\lambda/2)}{j!} P(B \le \beta : a, b; 0)$$
(1)

where

$$P(B \le \beta : a, b; 0) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^\beta B^{a-1} (1-B)^{b-1} dB,$$

which is the central beta probability function or incomplete beta function.

Recurrence relationships given in Abramowitz and Stegun (1972) are used to compute the values of $P(B \le \beta : a, b; 0)$ for each step of the summation (1).

The algorithm is discussed in Lenth (1987).

4 Parameters

1: \mathbf{x} - double Input

On entry: the deviate, β , from the beta distribution, for which the probability $P(B \le \beta : a, b; \lambda)$, is to be found.

Constraint: $0.0 \le x \le 1.0$.

a - double Input

On entry: the first parameter, a, of the required beta distribution.

Constraint: $0.0 < a \le 10^6$.

b - double Input

On entry: the second parameter, b, of the required beta distribution.

Constraint: $0.0 < \mathbf{b} \le 10^6$.

[NP3491/6] g01gec.1

4: lambda – double Input

On entry: the non-centrality parameter, λ , of the required beta distribution.

Constraint: $0.0 \le \text{lambda} \le -2.0 \times \log(U)$, where U is the safe range parameter as defined by nag real safe small number (X02AMC).

5: **tol** – double *Input*

On entry: the relative accuracy required by the user in the results. If nag_prob_non_central_beta_dist is entered with **tol** greater than or equal to 1.0 or less than $10 \times$ machine precision (see nag_machine_precision (X02AJC)), then the value of $10 \times$ machine precision is used instead.

See Section 6.1 for the relationship between tol and max iter.

6: max iter – Integer

On entry: the maximum number of iterations that the algorithm should use.

See Section 6.1 for suggestions as to suitable values for **max_iter** for different values of the parameters.

Suggested value: 500.

Constraint: $max_iter \ge 1$.

7: **fail** – NagError *

Input/Output

Input

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_REAL_ARG_CONS

On entry, $\mathbf{x} = \langle value \rangle$.

This parameter must satisfy $0.0 < \mathbf{x} \le 1.0$.

On entry, $\mathbf{a} = \langle value \rangle$.

This parameter must satisfy $0.0 < a \le 1.0e6$.

On entry, $\mathbf{b} = \langle value \rangle$.

This parameter must satisfy $0.0 < \mathbf{b} < 1.0e6$.

On entry, $lambda = \langle value \rangle$.

This parameter must satisfy $0.0 \le lambda \le -2.0 * log(X02AMC)$.

NE INT ARG LT

On entry, max_iter must not be less than 1: max_iter = <value>.

NE CONV

The solution has failed to converge in <value> iterations, consider increasing max iter or tol.

NE PROB LIMIT

The probability is too close to 0.0 or 1.0 for the algorithm to be able to calculate the required probability. nag_prob_non_central_beta_dist will return 0.0 or 1.0 as appropriate. This should be a reasonable approximation.

NE PROB B INIT

The required accuracy was not achieved when calculating the initial value of the beta distribution. The user should try a larger value of **tol**. The returned value will be an approximation to the correct value.

g01gec.2 [NP3491/6]

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

The central beta probabilities can be obtained by setting lambda = 0.0.

6.1 Accuracy

Convergence is theoretically guaranteed whenever $P(Y>\max_{i}) \leq tol$ where Y has a Poisson distribution with mean $\lambda/2$. Excessive round-off errors are possible when the number of iterations used is high and tol is close to *machine precision*. See Lenth (1987) for further comments on the error bound.

6.2 References

Lenth R V (1987) Algorithm AS226: Computing noncentral beta probabilities *Appl. Statist.* **36** 241–244 Abramowitz M and Stegun I A (1972) *Handbook of Mathematical Functions* Dover Publications (3rd Edition)

7 See Also

None.

8 Example

Values for several beta distributions are read, and the lower tail probabilities calculated and printed, until the end of data is reached.

8.1 Program Text

```
/* nag_prob_non_central_beta_dist (g01gec) Example Program.
    * Copyright 2000 Numerical Algorithms Group.
    * Mark 6, 2000.
    */

#include <stdio.h>
#include <nag.h>
#include <nagg01.h>

int main(void)
{
    double a, b, prob, lambda, tol, x;
    Integer max_iter;
    Integer exit_status=0;
    NagError fail;

    INIT_FAIL(fail);
    Vprintf("g01gec Example Program Results\n");

/* Skip heading in data file */
    Vscanf("%*[`\n]");
```

[NP3491/6] g01gec.3

8.2 Program Data

8.3 Program Results

g01gec Example Program Results

Х	a	b	lambda	prob
0.250	1.000	2.000	1.000	0.3168
0.750	1.500	1.500	0.500	0.7705
0.500	2.000	1.000	0.000	0.2500

g01gec.4 (last) [NP3491/6]